Search results for "extra dimension"

showing 10 items of 56 documents

Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector

2013

A search is presented for microscopic black holes in a like-sign dimuon final state in proton-proton collisions at √s= 8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6±0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL lower limits on microscopic black hole masses are set for different model assumptions.

Atlas detectorCiencias FísicasNuclear TheoryHadronDimensions01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Micro black hole[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QANuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsLarge Hadron ColliderLARGE EXTRA DIMENSIONSSettore FIS/01 - Fisica Sperimentaleblack holes; ATLAS detector; microscopicATLASPhysical SciencesLHCParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Nuclear physics0103 physical sciencesFysikddc:530High Energy PhysicsMultiplicity (chemistry)010306 general physicsCiencias ExactasScience & TechnologyATLAS detector010308 nuclear & particles physicsMillimeterFísica//purl.org/becyt/ford/1.3 [https]black holesAstronomíaBlack holeHADRON-HADRON COLLISIONSExperimental High Energy PhysicsTevPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentGravity SignaturesPHYSICAL REVIEW D
researchProduct

Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

2012

A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb[superscript −1] of proton–proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.

Atlas detectorPhysics::Instrumentation and DetectorsHadron01 natural sciencesHigh Energy Physics - ExperimentMicro black holeHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDetectors de radiacióPhysicsINTERAÇÕES NUCLEARESLarge Hadron ColliderBLACK HOLEAtlas (topology)Strong gravityAcceleradors de partículesExtra DimensionsSettore FIS/01 - Fisica SperimentaleMicroscopic black holesATLASExtra dimensionsLarge Hadron ColliderComputingMethodologies_DOCUMENTANDTEXTPROCESSINGExtra dimensionsAtlasLHCParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsDIMENSIONSCOLLISIONSSame-sign dimuonsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2GRAVITY ON BRANE WORLDS530Partícules (Física nuclear)Nuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsBLACK-HOLESMILLIMETERCiencias ExactasScience & TechnologyROOT-S=7 TEVATLAS detector010308 nuclear & particles physicssame-sign dimuons; microscopic black holes; extra dimensions; lhc; atlasFísicaCollisionLHC; ATLAS; Microscopic black holes; Extra dimensions; Same-sign dimuonsHADRON-HADRON COLLISIONSCol·lisions (Física nuclear)Experimental High Energy PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Search for anomalous production of events with two photons and additional energetic objects at CDF

2010

27 páginas, 17 figuras, 5 tablas.-- CDF Collaboration: et al.

COLLIDER DETECTORNuclear and High Energy PhysicsParticle physicsMEDIATED SUPERSYMMETRY-BREAKINGPhysics beyond the Standard ModelP(P)OVER-BAR COLLISIONSFOS: Physical sciencesElementary particleddc:500.2GAMMA PRODUCTION114 Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentMEDIATED SUPERSYMMETRY-BREAKING; CENTRAL ELECTROMAGNETIC CALORIMETER; ELECTROWEAK SYMMETRY-BREAKING; LARGE EXTRA DIMENSIONS; P(P)OVER-BAR COLLISIONS; COLLIDER DETECTOR; GAMMA PRODUCTION; ROOT-S=1.96 TEV; QCD; PYTHIA-5.7Nuclear physicsHigh Energy Physics - Experiment (hep-ex)13.85Rm; 13.85Qk; 18.80.-j; 14.80.Ly0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PYTHIA-5.7010306 general physicsPhysicsMuonLuminosity (scattering theory)hep-ex010308 nuclear & particles physicsPhysicsLARGE EXTRA DIMENSIONSQCDCENTRAL ELECTROMAGNETIC CALORIMETERROOT-S=1.96 TEVLarge extra dimensionHigh Energy Physics::ExperimentELECTROWEAK SYMMETRY-BREAKINGCollider Detector at FermilabEvent (particle physics)Lepton
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Ultrahigh-energy neutrino flux as a probe of large extra dimensions

2007

A suppression in the spectrum of ultrahigh-energy (UHE, >= 10^{18} eV) neutrinos will be present in extra-dimensional scenarios, due to enhanced neutrino-antineutrino annihilation processes with the supernova relic neutrinos. In the n>4 scenario, being n the number of extra dimensions, neutrinos can not be responsible for the highest energy events observed in the UHE cosmic ray spectrum. A direct implication of these extra-dimensional interactions would be the absence of UHE neutrinos in ongoing and future neutrino telescopes.

High Energy Physics - TheoryAstrofísicaParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxCosmic rayAstrophysics01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesUltrahigh energy010306 general physicsPhysicsAnnihilation010308 nuclear & particles physicsAstrophysics (astro-ph)High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysics3. Good healthHigh Energy Physics - PhenomenologySupernovaExtra dimensionsHigh Energy Physics - Theory (hep-th)13. Climate actionLarge extra dimensionHigh Energy Physics::ExperimentNeutrinoJournal of Cosmology and Astroparticle Physics
researchProduct

Light sterile neutrino from extra dimensions and four-neutrino solutions to neutrino anomalies

1999

We propose a four-neutrino model which can reconcile the existing data coming from underground experiments in terms of neutrino oscillations, together with the hint from the LSND experiment and a possible neutrino contribution to the hot dark matter of the Universe. It applies the idea that extra compact dimensions, probed only by gravity and possibly gauge-singlet fields, can lower the fundamental scales such as the Planck, string or unification scales. Our fourth light neutrino $\nu_s$ ($s$ for sterile) is identified with the zero mode of the Kaluza-Klein states. To first approximation \nu_sterile combines with the nu_mu in order to form a Dirac neutrino with mass in the eV range leaving …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physicsSterile neutrinoHot dark matterSolar neutrinoHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesMassless particleHigh Energy Physics - PhenomenologyExtra dimensionsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Measurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationPhysical Review D
researchProduct

Quantum walk on a cylinder

2016

We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …

High Energy Physics - Theorymass generationQuantum simulatorFOS: Physical sciencesQuantum entanglementGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesquantum walksQuantum walkBoundary value problem010306 general physicsEntropy (arrow of time)ComputingMilieux_MISCELLANEOUSquantum simulationPhysicsQuantum Physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Mass generationExtra dimensionsClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac equationsymbolsQuantum Physics (quant-ph)
researchProduct

Theory of Neutrinos: A White Paper

2005

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ``The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the e…

Neutrino mass physics; Matter-antimatter asymmetry of the UniverseParticle physicsSupersymmetric Standard ModelPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaElectric-dipole momentsPhysics beyond the Standard ModelFOS: Physical sciencesGeneral Physics and AstronomyTheoretical researchHigh Energy Physics - Phenomenology (hep-ph)White paperSee-saw mechanismneutriniPublicationParticle Physics - PhenomenologyPhysicsLepton-flavor violationDiscussion groupbusiness.industryHigh Energy Physics::PhenomenologyFísicaMatter-antimatter asymmetry of the UniverseDouble beta decaySettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciEpistemologyElectroweak symmetry-breakingHigh Energy Physics - PhenomenologyLarge extra dimensionsNeutrino mass physicsHeavy Majorana neutrinosHigh Energy Physics::ExperimentRight-handed neutrinoNeutrinoAnomalous magnetic momentWorking groupbusiness
researchProduct

Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector

2013

A search for new phenomena in events with a high-energy jet and large missing transverse momentum is performed using data from proton-proton collisions at √s = 7 TeV with the ATLAS experiment at the Large Hadron Collider. Four kinematic regions are explored using a dataset corresponding to an integrated luminosity of 4.7 fb[superscript −1]. No excess of events beyond expectations from Standard Model processes is observed, and limits are set on large extra dimensions and the pair production of dark matter particles.

Nuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências FísicasPhysics beyond the Standard Model:Ciências Físicas [Ciências Naturais]Dark matterFOS: Physical sciencesATLAS experimentddc:500.2Hadron-hadron scattering5307. Clean energy01 natural sciencesdark matterHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fysikddc:530High Energy PhysicsDetectors and Experimental Techniques010306 general physicsNuclear ExperimentQCCiencias ExactasHadron-Hadron Scattering; Nuclear and High Energy PhysicsPhysicsScience & TechnologyLarge Hadron Collider010308 nuclear & particles physicsAtlas (topology)Settore FIS/01 - Fisica SperimentaleATLAS experimentFísicaNEW PHYSICSATLASPair productionHADRON-HADRON COLLISIONSExperimental High Energy PhysicsPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLarge extra dimensionproton-proton collisionsHigh Energy Physics::ExperimentLHCParticle Physics - Experiment
researchProduct

The Hunt for New Physics at the Large Hadron Collider

2010

233 páginas.-- AHEP Group: et al..-- El Pdf del artículo es la versión pre-print: arXiv.1001.2693v1.-- Trabajo presentado al "The International Workshop on Beyond the Standard Model Physics and LHC Signatures (BSM-LHC) celebrado en Boston (USA) del 2 al 4 de junio de 2009.

Nuclear and High Energy PhysicsParticle physicsCold dark matterPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelFOS: Physical sciencesRANDALL-SUNDRUM MODEL01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)R-PARITY BREAKING0103 physical sciencesHigh Energy PhysicsANOMALOUS MAGNETIC-MOMENT010306 general physicsParticle Physics - PhenomenologyPhysicsEXPLICIT CP VIOLATIONDARK-MATTER DETECTIONLarge Hadron Collider010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaRENORMALIZATION-GROUP EQUATIONSHierarchy problemSupersymmetryAtomic and Molecular Physics and OpticsGRAND UNIFIED THEORIESSUPERSYMMETRIC STANDARD MODELHidden sectorExtra dimensionsHigh Energy Physics - PhenomenologyMINIMAL FLAVOR VIOLATION[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PhenomenologyHigh Energy Physics::ExperimentHIGGS-BOSON PRODUCTION
researchProduct